Methanol - An Ultra Clean Marine Fuel Solution

GREENTECH 2018 – Environmental Conference
June 1, 2018 | Vancouver, B.C.

Jason Chesko, Sr. Manager, Global Market Development, Methanex Corp.
Diego Jaramillo, Manager, Quality & Responsible Care, Waterfront Shipping
1) Methanex Corporation
2) About Methanol
3) Methanol Marine Fuel
 • Attributes / Business Case
 • Commercial Developments
4) Waterfront Shipping: Methanol dual fuel vessels – an operator’s experience
Methanex Corporation
Methanex

The world’s largest producer and supplier of methanol to major international markets
About Methanol
Methanol

An essential ingredient of modern life

- Chemical market - essential ingredient used in countless industrial and consumer products (~55% demand)
- Fuels/oil substitution markets - represent the fastest growing demand segment for methanol (~45% demand)

Energy/Fuels Markets

Vehicle Fuel Marine Fuel Power Generation
Methanol Production

Methanol is typically made from natural gas

The methanol production process consists of four stages:

1. Desulphurization of natural gas
2. Reforming
3. Methanol Synthesis
4. Distillation

Liquid fuel at ambient temperature & pressure
Methanol Production

Methanol offers pathways to reduce CO₂ emissions

- Production from renewables and/or utilizing excess CO₂ streams
- Lower carbon content fuel for Energy Efficiency Design Index (EEDI) for new vessels

<table>
<thead>
<tr>
<th>Status</th>
<th>Company</th>
<th>Country</th>
<th>Feedstock</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMERCIAL</td>
<td>BioMCN</td>
<td>The Netherlands</td>
<td>Bio-methane</td>
<td>Bio-methanol</td>
</tr>
<tr>
<td></td>
<td>CRI</td>
<td>Iceland</td>
<td>Renewable electricity</td>
<td>Renewable methanol</td>
</tr>
<tr>
<td></td>
<td>Enerkem</td>
<td>Canada</td>
<td>MSW</td>
<td>Bio-methanol</td>
</tr>
<tr>
<td></td>
<td>Methanex</td>
<td>Canada</td>
<td>CO₂</td>
<td>Low carbon methanol</td>
</tr>
<tr>
<td></td>
<td>Oberon</td>
<td>USA</td>
<td>Biogas</td>
<td>Bio-methanol and DME</td>
</tr>
<tr>
<td></td>
<td>QAFAQ</td>
<td>Qatar</td>
<td>CO₂</td>
<td>Low carbon methanol</td>
</tr>
<tr>
<td>R&D and FEASIBILITY</td>
<td>BKW</td>
<td>Switzerland</td>
<td>Renewable electricity</td>
<td>Renewable methanol</td>
</tr>
<tr>
<td></td>
<td>Enerkem</td>
<td>The Netherlands</td>
<td>MSW</td>
<td>Bio-methanol</td>
</tr>
<tr>
<td></td>
<td>Infraserve</td>
<td>Germany</td>
<td>Catalyst research</td>
<td>Renewable methanol</td>
</tr>
<tr>
<td></td>
<td>Innogy</td>
<td>Germany</td>
<td>Renewable electricity</td>
<td>Renewable methanol</td>
</tr>
<tr>
<td></td>
<td>Lowlands Methanol</td>
<td>The Netherlands</td>
<td>MSW</td>
<td>Bio-methanol</td>
</tr>
<tr>
<td></td>
<td>OPTIMEoH</td>
<td>Germany</td>
<td>Biogas</td>
<td>Bio-methanol</td>
</tr>
<tr>
<td></td>
<td>STEAG</td>
<td>Germany</td>
<td>CO₂ and electricity</td>
<td>Low carbon methanol</td>
</tr>
<tr>
<td></td>
<td>Swerea</td>
<td>Sweden</td>
<td>Steel mill emissions</td>
<td>Low carbon methanol</td>
</tr>
<tr>
<td></td>
<td>ZAST</td>
<td>Germany</td>
<td>CO₂ and renewable electricity</td>
<td>Renewable methanol</td>
</tr>
</tbody>
</table>

Source: Methanol Institute
Methanol Marine Fuel
Methanol Marine Fuel

Methanol is an innovative alternative fuel solution with many benefits

- Low emissions
- Wide availability
- Innovative technology with low incremental cost
- Fuel flexibility
- Competitive fuel costs
- Safe, environmentally friendly
- Successfully in use today
- Commercialization activity expanding
IMO Sulphur Limits – Marpol Annex VI

IMO limits SOx content of fuel to 0.1% in ECAs. Global sulphur cap of 0.5% (from current 3.5%) to come into effect in 2020.

IMO Nitrogen Oxides Limits – Marpol Annex VI

Tier III NOx limits effective in North America in 2016 and North and Baltic effective 2021 (newbuilds only)

Source: IMO
Methanol is a clean-burning fuel that meets stringent environmental regulations

Emissions Reductions

Source: Stena Lines

Emission reductions when compared to heavy fuel oil
Emissions Reductions – Tier III NOx

- Methanol significantly reduces NOx compared to diesel with current engine technology, but not quite to Tier III levels
- Tier III NOx limits can potentially be met with water in methanol

1. EGR
2. SCR
3. Water + Methanol

- R&D work underway to meet Tier III NOx with a mixture of methanol & water
- Reduce additional capital and operational expenses related to SCR/EGR after treatment

Source: MAN
Wide Availability

Methanol infrastructure already in place and well positioned to reliably supply the global marine industry.

Methanol Global Terminal Locations

Methanol global terminal locations based on available information; not a complete list.

North America Methanol Market

Red flags/circles represent existing methanol supply locations; lines represent rail networks.

Source: Methanex
Innovative Technology

Methanol has minor modification requirements and modest incremental cost
Low-Cost Infrastructure and Capital Costs

- Methanol is a cost-effective, liquid marine fuel alternative
- Methanol offers fuel flexibility

Utilize existing supply chain/infrastructure

- Liquid fuel at ambient temperature & pressure
- Low cost infrastructure
- Compatible with diesel infrastructure

Modest incremental cost to convert or build new engines to operate on methanol

- Engine technology straightforward/minor modifications required
- Small amount of diesel used as pilot fuel
- Flex fuel (diesel or methanol) maintained mitigating commodity price & technology risks
Methanol is an economically viable alternative marine fuel over the cycle. Potential for short payback on investment based on historical fuel pricing.

Marine Fuel Pricing
Methanol adjusted to MGO Energy Equivalency

- Chart source: Platts and IHS Chemical
 - Methanol: USGC spot price adjusted to energy equivalent of MGO (2.16 factor)
 - MGO: West Coast Average: Vancouver, Seattle, San Francisco, LA; East Coast Average: New York, Philadelphia, Norfolk, Montreal, Charleston
Methanol - Environment, Health and Safety

Methanol is a clear, colourless liquid that quickly and naturally biodegrades

- More environmentally benign than conventional marine fuels (i.e. HFO and MGO)
- Long history of methanol safe handling
- International standard (IGF Code) under development for methanol as marine fuel
Methanol in Use Today: Stena Germanica Ferry

The world’s first methanol-fuelled ferry

- Stena Germanica ferry converted to run on methanol in 2015
- Gothenburg to Kiel
- Powered by four Wärtsilä 4-stroke engines (24 MW total)
- Straightforward fueling (liquid fuel)
- Fuel switching (Methanol or MGO) is fast, simple and reliable. No loss in engine speed or output
- Efficiency improvements (i.e. 1-2%) versus diesel
Methanol in Use Today: Waterfront Shipping Tankers

The world’s first methanol-fuelled tankers

- Commercial-ready technology
- In 2016, Waterfront Shipping launched 7 vessels with methanol dual-fuel MAN ME-LGI 2-stroke engines
 - 4 new methanol dual-fuel vessels on order for 2019 delivery
- Multiple ship owners
- Operating safely and reliably, across the globe: ~30,000 operating hours
Methanol Marine Fuel Commercialization Activities - Small Engine Market

<table>
<thead>
<tr>
<th>Leanships (Horizon 2020)</th>
<th>GreenPilot</th>
<th>SUMMETH</th>
<th>Ministry of Transport</th>
<th>Billion Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>Sweden</td>
<td>Sweden</td>
<td>China</td>
<td>Singapore</td>
</tr>
<tr>
<td>Engine Conversion</td>
<td>Pilot Boat Conversion</td>
<td>Road Ferry Conversion</td>
<td>Fishing Boat Conversion & Guidelines</td>
<td>Harbour Tug Conversion</td>
</tr>
<tr>
<td>Ghent University, Damen Shipyards, Methanex, Abeking & Rasmussen, Kant Marine & Industrie, Dredging International</td>
<td>Swedish Maritime & Transport, SSPA Sweden, ScandiNAOS, Methanol Institute</td>
<td>Consortium of partners (academia, technical, industry)</td>
<td>Ministry of Transport, Tianjin University, China Classification Society, Methanex</td>
<td>Billion Miles</td>
</tr>
</tbody>
</table>
Waterfront Shipping

Methanol dual fuel vessels – An operator’s experience
Waterfront Shipping
- 28 vessels, including 7 methanol dual-fuel vessels
- 4 new methanol dual-fuel vessels on order (2019)
Strong partnership between reliable stakeholders

Vessel concept developed together with MAN Diesel & Turbo, Alfa Laval, DNV-GL and the Norwegian Maritime Directorate.

Seven ships in total from Hyundai Mipo Dockyard and Minaminippon Shipbuilding for Marininvest, Westfal-Larsen and MOL on long term time charter with Waterfront Shipping owned by Methanex.
Design Philosophy: General design decision

Primary focus in the Dual fuel system concept has been personal and system safety. Secondly, sustain engine reliability.

Main design considerations

- A **Gas safe** engine room
- A **single failure** results in Second Fuel (SF, Methanol) shut down or SF stop
- The Methanol system **must not affect** the engine running on MGO/HFO
- The Methanol system is an “**Add-On**” to the ME engine
Methanol concept: Supply System (LFSS)
LFSS Unit (Liquid Fuel Supply System)
Safety features

- **Fail Safe System** - Auto change over from Secondary Fuel to Primary Fuel
- **Nitrogen** Purging
- **Double Walled** Piping and Components
- **Leakage Detection**
- **Continuous Ventilation**
- **Intrinsically safe** components
- **Fixed CO2 Extinguishing System**
- **CCTV Monitoring**
- **Alarms** with shutdown and purging
- **Immediate switch** to conventional fuel
- **Fire fighting on deck**
- **Fire fighting in Engine Room**
Main Engine - Overview
Main Engine - Overview

ME-Engine + **LGI Technology** = **ME-LGI-M**

- HFO/MGO
- Methanol
- Dual Fuelled
Novel ideas based on proven technology

Centered around the **MAN Ultra-long-stroke dual fuel engine** (6G50ME-B9.3-LGI), ensuring a **solid and reliable framework**.

Designed with instantaneous, **automatic fall-back to conventional fuel** in the unlikely event of a disruption of methanol supply.

Able to operate at **unrestricted power, equivalent efficiency, reduced emissions**, with 5% pilot fuel.

Fuel Booster Injection Valves with **integrated pressure booster allow for low pressure supply of methanol fuel**, through double wall pipes from the Liquid Fuel Supply System on main deck.
ME-LGI-M: Additional components compared to a standard engine

- FBIV-M
- Hyd pipe for FBIV-M
- Seal & purge pipe
- Control, LGI & purge block
- Sleeve
- Cyl cover
- Overview of main LGI Components on engine
- Supply & purge system
ME-LGI-M: 4 Fuel Valves per Cylinder
FBIV and conventional fuel injector slide valve
Fuel Booster Injection Valve (FBIV)

Sealing/
cooling /
hydraulic oil

Injection

Methanol

Booster
(injection pump)
Status

✓ Currently operating on Methanol.
✓ ~30,000 operating hours
✓ 3 fuel options (HFO, MGO, Methanol): flexibility in many price scenarios
✓ Cylinder chambers are much cleaner.
✓ Engineering crew transfer their knowledge from conventional engines.
✓ MAN provides LGI-M specific training to engineers
✓ Technical improvement and learnings continue
Thank you!

- For more information on methanol marine fuels & supply -

VANCOUVER, CANADA
Jason Chesko
jchesko@methanex.com
+1.604.661.2680

FLORIDA, USA
Renato Monteiro
rmonteiro@methanex.com
+1.604.308.0400

www.methanex.com
linkedin.com/company/methanex-corporation
@Methanex