FUEL SAVING STRATEGIES FOR TUG AND BARGE OPERATORS

5.29.2015
GREENTECH 2015 CONFERENCE
EIGHT MOST PROMISING FUEL SAVING MEASURES

Technical Solutions
• Fuel consumption monitoring
• Hydralift skegs
• High-efficiency nozzles
• Hull optimization

Operational Solutions
• Barge trim
• Voyage planning tools
• Pushing configuration
• Propeller polishing

Photo courtesy of Ken FitzGerald
PROJECT BACKGROUND

Focus of Research:
- Reducing fuel consumption
- River and open-water barge operations
- Technologies and strategies that offer best return on investment
- New construction or retrofit
- Physical mods, operational changes, or both

Certain technologies and strategies identified here could result in fuel savings of ~20%.

Combining two or more could result in very significant reductions >20%.
TECHNICAL SOLUTIONS
FUEL CONSUMPTION MONITORING

- Flow meters
- Collect data
- Onboard & office
- Influences behaviors

Up to 10% Fuel Savings indirectly realized
FUEL CONSUMPTION MONITORING

- Flow meters
- Collect data
- Onboard & office
- Influences behaviors

Up to 10% Fuel Savings indirectly realized
HYDRAUFLIFT SKEGS

- Directional stability
- Traditional boxy skeg
- Lift and drag
- Added thrust
- Reduces towing resistance
- 1 knot speed increase

10 to 20% Fuel Savings
HYDRALIFT SKEGS

- Directional stability
- Traditional boxy skeg
- Lift and drag
- Added thrust
- Reduces towing resistance
- 1 knot speed increase

10 to 20% Fuel Savings
HYDRAFLIFT SKEGS

• Directional stability
• Traditional boxy skeg
• Lift and drag
• Added thrust
• Reduces towing resistance
• 1 knot speed increase

10 to 20% Fuel Savings
HIGH EFFICIENCY NOZZLES

- Ducted propeller
- Increases thrust
- Kort nozzle
- High efficiency nozzle
- Bollard pull increase 12% to 50%
- 1 knot speed increase

10 to 20% Fuel Savings
HIGH EFFICIENCY NOZZLES

• Ducted propeller
• Increases thrust
• Kort nozzle
• High efficiency nozzle
• Bollard pull increase 12% to 50%
• 1 knot speed increase

10 to 20% Fuel Savings
HULL OPTIMIZATION

- Use CFD
- Analyses 2,000+ hulls
- Reduce resistance
- Increases thrust
- For tugs and barges

10 to 20% Fuel Savings
HULL OPTIMIZATION

• Use CFD
• Analyses 2,000+ hulls
• Reduce resistance
• Increases thrust
• For tugs and barges

10 to 20% Fuel Savings
OPERATIONAL SOLUTIONS
OPTIMAL BARGE TRIM

• Minimizes resistance for a given operating speed and draft.

• Industry perception that aft trim improves directional stability.

• This introduces additional resistance.

Potential fuel savings >2.5%.
OPTIMAL BARGE TRIM

- Minimizes resistance for a given operating speed and draft.

- Industry perception that aft trim improves directional stability.

- This introduces additional resistance.

Potential fuel savings >2.5%.
VOYAGE PLANNING

• State of the art tools that provide vessel operators with useful information.
 – Active weather routing
 – Voyage optimization services and software
 – Proprietary modeling tools / software
 – Systematic processes for data collection and post-voyage analysis

Savings vary. May exceed 4%.
VOYAGE PLANNING

- State of the art tools that provide vessel operators with useful information.
 - Active weather routing
 - Voyage optimization services and software
 - Proprietary modeling tools / software
 - Systematic processes for data collection and post-voyage analysis

Savings vary. May exceed 4%.
PUSHING VS. TOWING ASTERN

- There are inherent disadvantages in towing barges astern.

- Pushing ahead:
 - Eliminates barge yaw
 - Reduces resistance from towing gear
 - Reduces resistance from wind and waves

Potential fuel savings up to 25%.
PUSHING VS. TOWING ASTERN

• There are inherent disadvantages in towing barges astern.

• Pushing ahead:
 – Eliminates barge yaw
 – Reduces resistance from towing gear
 – Reduces resistance from wind and waves

Potential fuel savings up to 25%.
PROPELLER POLISHING

- Improves propulsive efficiency.
- Eliminates fouling.
- Decreases propeller roughness.
- Effect on total fuel consumption depends on many factors.

Potential fuel savings of 2 to 4% (after polishing).
PROPELLEER POLISHING

• Improves propulsive efficiency.
• Eliminates fouling.
• Decreases propeller roughness.
• Effect on total fuel consumption depends on many factors.

Potential fuel savings of 2 to 4% (after polishing).
SUMMARY

Eight fuel saving measures
How do we incentivize fuel savings?
Experiment with operations, collect data
Test known assumptions